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Abstract. We study an energy functional for computing optical flow tbain-
bines three assumptions: a brightness constancy assuticadient constancy
assumption, and a discontinuity-preserving spatio-teaigmoothness constraint.
In order to allow for large displacements, linearisatianthie two data terms are
strictly avoided. We present a consistent numerical scheased on two nested
fixed point iterations. By proving that this scheme impletsem coarse-to-fine
warping strategy, we give a theoretical foundation for vimgpwvhich has been
used on a mainly experimental basis so far. Our evaluatiarodstrates that the
novel method gives significantly smaller angular errorsithigevious techniques
for optical flow estimation. We show that it is fairly insetig to parameter vari-
ations, and we demonstrate its excellent robustness uodss.n

1 Introduction

Optical flow estimation is still one of the key problems in quuter vision. Estimating
the displacement field between two images, it is applied as s correspondences
between pixels are needed. Problems of this type are notesisicted to motion esti-
mation, they are also presentin a similar fashion in 3D retation or image registra-
tion. In the last two decades the quality of optical flow estiien methods has increased
dramatically. Starting from the original approaches of tdand Schunck [11] as well
as Lucas and Kanade [15], research developed many new dsrfoemlealing with
shortcomings of previous models. In order to handle disnaittes in the flow field,
the quadratic regulariser in the Horn and Schunck model eplaced by smoothness
constraints that permit piecewise smooth results [1, R125]. Some of these ideas
are close in spirit to methods for joint motion estimationl amotion segmentation [10,
17], and to optical flow methods motivated from robust stiagsvhere outliers are pe-
nalised less severely [6, 7]. Coarse-to-fine strategies [[H] as well as non-linearised
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models [19, 2] have been used to tackle large displacemieimially, spatio-temporal
approaches have ameliorated the results simply by usinghfbenation of an addi-
tional dimension [18, 6, 26, 10].

However, not only new ideas have improved the quality ofegbflow estimation tech-
niques. Also efforts to obtain a better understanding oftviiia methods do in detail,
and which effects are caused by changing their parametavs, an insight into how
several models could work together. Furthermore, vanatiformulations of models
gave access to the long experience of numerical mathematsslving partly diffi-
cult optimisation problems. Finding the optimal solutioratcertain model is often not
trivial, and often the full potential of a model is not usedaese concessions to imple-
mentation aspects have to be made.

In this paper we propose a novel variational approach thegiiates several of the be-
fore mentioned concepts and which can be minimised withid saimerical method. It
is further shown that a coarse-to-fine strategy using theafled warping technique [7,
16], implements the non-linearised optical flow constraged in [19, 2] and in image
registration. This has two important effects: Firstly,édomes possible to integrate the
warping technique, which was so far only algorithmicallytimated, into a variational
framework. Secondly, it shows a theoretically sound wayovf image correspondence
problems can be solved with an efficient multi-resolutiazhtéque. It should be noted
that — apart from a very nice paper by Lefébure and Coher{Iwjt many theoretical
results on warping are available so far.

Finally, the grey value constancy assumption, which is th&idassumption in opti-
cal flow estimation, is extended by a gradient constancymagan. This makes the
method robust against grey value changes. While gradierstancy assumptions have
also been proposed in [23, 22] in order to deal with the apefooblem in the scope
of a local approach, their use within variational methodsaigel.

The experimental evaluation shows that our method yieldsleeat results. Compared
to those in the literature, their accuracy is always sigaiftty higher, sometimes even
twice as high as the best value known so far. Moreover, théoagbroved also to be
robust under a considerable amount of noise and computéties of only a few sec-
onds per frame on contemporary hardware are possible.

Paper organisation.In the next section, our variational model is introducedt firy

discussing all model assumptions, and then in form of anggnieased formulation.
Section 3 derives a minimisation scheme for this energy.tferetical foundation of
warping methods as a numerical approximation step is givedection 4. An experi-
mental evaluation is presented in Section 5, followed byief Bummary in Section 6.

2 The Variational Model
Before deriving a variational formulation for our opticadt method, we give an intu-
itive idea of which constraints in our view should be incldde such a model.

— Grey value constancy assumption.
Since the beginning of optical flow estimation, it has beesuased that the grey
value of a pixel is not changed by the displacement.

I(z,y,t) = I(x +u,y +v,t +1) (1)



Herel : 2 ¢ R? — R denotes a rectangular image sequenceyvang (u,v,1) "
is the searched displacement vector between an image at imtanother image
at timet + 1. The linearised version of the grey value constancy assompields
the famous optical flow constraint [11]

Lu+Iv+1;=0 (2)

where subscripts denote partial derivatives. Howeves lilearisation is only valid
under the assumption that the image changes linearly ahedjsplacement, which
is in general not the case, especially for large displacésn&herefore, our model
will use the original, non-linearised grey value constaassumption (1).

Gradient constancy assumption.

The grey value constancy assumption has one decisive deawbis quite suscep-

tible to slight changes in brightness, which often appearaitural scenes. There-
fore, it is useful to allow some small variations in the greyue and help to de-

termine the displacement vector by a criterion that is imrarunder grey value

changes. Such a criterion is the gradient of the image grexgvahich can also be

assumed not to vary due to the displacement [23]. This gives

VI(z,y,t) =VI(z+u,y+uvt+1). 3)

HereV = (9,,0,)" denotes the spatial gradient. Again it can be useful toirefra
from alinearisation. The constraint (3) is particularlygiel for translatory motion,
while constraint (2) can be better suited for more compdidahotion patterns.

Smoothness assumption.

So far, the model estimates the displacement of a pixel aulglly without taking
any interaction between neighbouring pixels into accouiherefore, it runs into
problems as soon as the gradient vanishes somewhere, ¢y therflow in normal
direction to the gradient can be estimategdrture problen Furthermore, one
would expect some outliers in the estimates. Hence, it ifulge introduce as a
further assumption the smoothness of the flow field. This shress constraint
can either be applied solely to the spatial domain, if theesanly two frames
available, or to the spatio-temporal domain, if the disptaents in a sequence of
images are wanted. As the optimal displacement field willehdigcontinuities at
the boundaries of objects in the scene, it is sensible torgbse the smoothness
assumption by demandingoéecewise smoottow field.

Multiscale approach.

In the case of displacements that are larger than one pixéigrae, the cost func-
tional in a variational formulation must be expected to bdtihmodal, i.e. a min-

imisation algorithm could easily be trapped in a local minim In order to find the
global minimum, it can be useful to apply multiscale ideaseQtarts with solv-
ing a coarse, smoothed version of the problem by working ersthoothed image
sequence. The new problem may have a unique minimum, hdyefase to the

global minimum of the original problem. The coarse solutisused as initiali-

sation for solving a refined version of the problem until sbgpstep the original
problem is solved. Instead of smoothing the image sequérisanore efficient to



downsample the images respecting the sampling theorerhesaddel ends up in
a multiresolution strategy.

With this description, it is straightforward to derive areegy functional that penalises
deviations from these model assumptions. ket= (z,y,t)" andw := (u,v,1)7.
Then the global deviations from the grey value constancyrapion and the gradient
constancy assumption are measured by the energy

Epata(u,v) = / (|I(x +w)— I(x)|2 +9|VI(x+w)— Vf(x)|2) dx (4)
£2

with ~ being a weight between both assumptions. Since with quagramalisers, out-

liers get too much influence on the estimation, an increasimgave functiow(s?) is

applied, leading to a robust energy [7, 16]:

Eata(u,v) = /Q W ([1(x +w) — IX)]2 +4|VI(x + w) - VIx)]?) dx  (5)

The function? can also be applied separately to each of these two termssé/tha
function®(s?) = v/s2 + €2 which results in (modified).' minimisation. Due to the
small positive constant ¥ (s) is still convex which offers advantages in the minimisa-
tion process. Moreover, this choice®fdoes not introduce any additional parameters,
sincee is only for numerical reasons and can be set to a fixed valuiehwie choose

to be0.001.

Finally, a smoothness term has to describe the model aseamgbta piecewise smooth
flow field. This is achieved by penalising the total variatmfnthe flow field [20, 8],
which can be expressed as

ESmooth(uzv) = / 4 (|V3U|2 + |V3U|2) dx. (6)
2

with the same function faf as above. The spatio-temporal gradi€gt= (9., 9, 0;) "
indicates that a spatio-temporal smoothness assumptiondk/ed. For applications
with only two images available it is replaced by the spatiadient.

The total energy is the weighted sum between the data terrtharminoothness term

E(ua U) = Epata + aEsmooth (7)
with some regularisation parameter> 0. Now the goal is to find the functionsand
v that minimise this energy.

3 Minimisation
3.1 Euler-Lagrange Equations

Since E(u, v) is highly nonlinear, the minimisation is not trivial. Forther readabil-
ity we define the following abbreviations, where the use d@fistead oft emphasises



that the expression isot a temporal derivative but a difference that is sought to be
minimised.
I, = 0;1(x+w),
I, =0,I(x+w),
I, =1x+w)—I(x),
Iy = O I(x + W), (8)
Iy = Oy I (x + W),
Iy = Oyl (x+ W),
I, = 0, 1(x +w) — 0, 1(x),
I, == 0yIl(x+w) — 0yI(x).

According to the calculus of variations, a minimiser of (Q)snfulfill the Euler-Lagrange
equations

<

8

<

W/(IS + 'Y(Iiz + Iy22)) (Ll + (Lo dez + IxnyZ))

—adiv (¥ (|Vsul® + |V30[*) Vau) = 0,
WI(IZQ + ’V(Ia%z + Iiz)) : (Iylz + ’Y(Iyylyz + InywZ))

—adiv (¥'(|Vsul> + |V30[*)Vsv) =0

with reflecting boundary conditions.

3.2 Numerical Approximation

The preceding Euler-Lagrange equations are nonlineaeinalgumentv = (u,v,1)".
A first step towards a linear system of equations, which casdbgeed with common
numerical methods, is the use of fixed point iterationssarin order to implement a
multiscale approach, necessary to better approximatdabalgpptimum of the energy,
these fixed point iterations are combined with a downsarggtrategy. Instead of the
standard downsampling factor 0f5 on each level, it is proposed here to useaaini-
trary factorn € (0, 1), what allows smoother transitions from one scale to thelnext
Moreover, the full pyramid of images is used, starting whik smallest possible im-
age at the coarsest grid. Let* = (u*,v* 1)T, k = 0,1,..., with the initialisation
= (0,0,1) " at the coarsest grid. Further, Ie’i be the abbreviations defined in (8)
but with the iteration variables* instead ofw. Thenw”+! will be the solution of
V(I () + (1)) - (T + (I I + 15, IyH)

zxtzz zytyz )

—adiv (¥ (|VsuP T2 + [VsoP T 2) Vauh ) =

W) (T (IE)2) - (T (I, 1557 4 15, 1541))
( ) =

Yy Yz zytxz
—a div ( |V3uk+1|2 + |ngk+1 Vg’l}k+1

(9)

As soon as a fixed point in* is reached, we change to the next finer scale and use this
solution as initialisation for the fixed point iteration dnig scale.

! Since the grid size in both x- and y-direction is reduced;byhe image size in fact shrinks
with a factorn? at each scale.



Notice that we have a fully implicit scheme for the smoottatesm and a semi-implicit
scheme for the data term. Implicit schemes are used to yighthstability and faster
convergence. However, this new system is still nonlineaabse of the nonlinear func-
tion ¥’ and the symbolg**+!. In order to remove the nonlinearity i+, first order
Taylor expansions are used:

IFE o IF + IR du® + I do*,
IEFY = IF, + IE, dub + 1F, do*,
k+1 o Tk k gk o Tk ok
L7 = 1y, + Iy, du” + I dv”,

whereu*+1 = u* + du® andvk*! = v* + dv*. So we split the unknowng®*1, vk+1
in the solutions of the previous iteration stefy v* and unknown increment:”, dv*.
For better readability let

(O Voata =0 (I + Thdu® + Thdv*y?
(I, + Ty du® 4 T, dv*)? o+ (IF, + I, du® + I, b)) ),
() S mootn = W' (IVa(u* + dub)[* + V3 (0" + dv")[?), (10
1
where(?’)% . canbe interpreted as a robustness factor in the data tedWark,,, ...

as a diffusivity in the smoothness term. With this the firata&épn in system (9) can be
written as

0= ()50 (Jjg (15 + IEdu® + TFdo*) )
+7 (%) bata - (I;z (I, + Lpdu® + I, dv®) + I3 (I, + L7, du® + Iﬁydv’ﬂ)
—adiv ()5 00t Vs (uF + duk)) (11)

and the second equation can be expressed in a similar way.ig ktill a nonlinear
system of equations for a fixed but now in the unknown incrementa”, dv*. As
the only remaining nonlinearity is due &/, and? has been chosen to be a convex
function, the remaining optimisation problem is a convealjem, i.e. there exists a
unique minimum solution.

In order to remove the remaining nonlinearityfify a second, inner, fixed pointiteration
loop is applied. Letlu*° := 0, dv*° := 0 be our initialisation and letu""!, dv*-!
denote the iteration variables at some stefurthermore, letw’)’;! and(w")%!
denote the robustness factor and the diffusivity defined.®) &t iterationk, I. Then
finally thelinear system of equations "' +1, dv*!*! reads

0= @) hr - (TE (1 + Lidu 0 4 hawh47)
YL (I, T, e I QM) I (15, + T du™ 4 I ) )
— @AV ()]0 V" +du™ 1)) (12)

for the first equation. Using standard discretisations ffier derivatives, the resulting
sparse linear system of equations can now be solved with @mmumerical methods,
such as Gauss-Seidel or SOR iterations. Expressions off type w*) are computed

by means of bilinear interpolation.



4 Relation to Warping Methods

Coarse-to-fine warping techniques are a frequently usdddoomproving the perfor-
mance of optic flow methods [3,7,17]. While they are oftemadticed on a purely
experimental basis, we show in this section that they cahderétically justified as a
numerical approximation.

In order to establish this relation, we restrict ourseh@shte grey value constancy
model by settingy = 0. Let us also simplify the model by assuming solely spatial
smoothness, as in [17]. Under these conditions, (11) carrittemwas

Nk , du® div (T, ooen V(uF + duk)
()b VIV (d> o (div ((@/)Emoof;vwk i dv’*)g)

= —(W)paraIEVIF (13)

For a fixedk, this system is equivalent to the Euler—Lagrange equatiessribed in
[17]. Also there, only the incremendis, anddv between the firstimage and the warped
second image are estimated. The same increments appearadnttr fixed point iter-
ations of our approach in order to resolve the nonlineafithe grey value constancy
assumptionThis shows that the warping technique implements the nsation of a
non-linearised constancy assumption by means of fixed peiations onw.

In earlier approaches, the main motivation for warping heesfthe coarse-to-fine strat-
egy. Due to solutions andv computed on coarser grids, only an increménainddv
had to be computed on the fine grid. Thus, the estimates udeal/®oa magnitude of
less than one pixel per frame, independent of the magnitfitteedotal displacement.
This ability to deal with larger displacements proved to beegy important aspect in
differential optical flow estimation.

A second strategy to deal with large displacements has beenidage of the non-
linearised grey value constancy assumption [19, 2]. Hamggel displacements are al-
lowed from the beginning. However, the nonlinearity resutt a multi-modal func-
tional. In such a setting, the coarse-to-fine strategy isombt wanted, but even nec-
essary to better approximate the global minimum. At the éoth strategies not only
lead to similar results. In fact, as we have seen above, tfeegampletely equivalent.
As a consequence, the coarse-to-fine warping technique edorimulated as a sin-
gle minimisation problem, and image registration techagelying on non-linearised
constancy assumptions get access to an efficient multirésoimethod for minimising
their energy functionals.

5 Evaluation

For evaluation purposes experiments with both synthetit real-world image data
were performed. The presented angular errors were compateading to [5].

Let us start our evaluation with the two variants of a famaguence: th&osemitese-
guence with and without cloudy sky. The original versionhagtoudy sky was created
by Lynn Quam and is available &t p: //ft p. csd. uwo. ca/ pub/ vi si on. It com-
bines both divergent and translational motion. The versithout clouds is available



Yosemite with clouds Yosemite without clouds

Technique AAE STD Technique AAE STD
Nagel [5] 10.22 16.5T Juetal.[12] 2.16 2.00°
Horn-Schunck, mod. [5] 9.7816.19 Bab-Hadiashar—Suter [4] 2.02.92
Uraset al.[5] 8.94° 15.6T Lai—Vemuri [13] 1.99 1.41r
Alvarezet al.[2] 5,53 7.40C Our method (2D) 159 1.39
Weickertet al.[24] 5.18 8.68 Mémin—Pérez [16] 1.581.21°
Mémin—Pérez [16] 4.69 6.89 Weickertet al.[24] 1.46° 1.5C°
Our method (2D) 246 7.3 Farneback [10] 1.142.14
Our method (3D) 1.94 6.02 Our method (3D) 0.98 1.17

Table 1.Comparison between the results from the literature with%@ensity and our results for
the Yosemitesequence with and without cloudy sky. AAE = average angutar.eSTD = standard
deviation. 2D = spatial smoothness assumption. 3D = spatigoral smoothness assumption.

athttp://ww. cs. brown. edu/ peopl e/ bl ack/i mages. ht m .

Tab.1 shows a comparison of our results for both sequenceetbest results from
the literature. As one can see, our variational approaghesfarms all other methods.
Regarding the sequence with clouds, we achieve resultatbanore than twice as ac-
curate as all results from the literature. For the sequeritt®ut clouds, angular errors
below 1 degree are reached for the first time with a methodotfexts full density. The
corresponding flow fields presented in Fig.1 give a qualisitinpression of these raw
numbers: They match the ground truth very well. Not only tieeahtinuity between
the two types of motion is preserved, also the translatioralon of the clouds is esti-
mated accurately. The reason for this behaviour lies in ssumptions, that are clearly
stated in the energy functional: While the choice of the stimoess term allows discon-
tinuities, the gradient constancy assumption is able taledorightness changes — like
in the area of the clouds.

Because of the presence of second order image derivatiees energy functional, we

tested the influence of noise on the performance of our meéthtie next experiment.

We added Gaussian noise of mean zero and different standsaiatidns to both se-

quences. The obtained results are presented in Tab.2. ibesbkat our approach even
yields excellent flow estimates when severe noise is preBenthe cloudy Yosemite

sequence, our average angular error for noise with starttdatidtion 40 is better than
all results from the literature for the sequendgéhoutnoise.

In a third experiment we evaluated the robustness of the faeameters in our ap-
proach: the weighty between the grey value and the gradient constancy assumptio
and the smoothness parameterOften an image sequence is preprocessed by Gaus-
sian convolution with standard deviatiet{5]. In this caseg can be regarded as a third
parameter. We computed results with parameter settingslévéated by a factor 2 in
both directions from the optimum setting. The outcome disteTab. 3 shows that the
method is also very robust under parameter variations.



Yosemite with clouds Yosemite without clouds

On AAE STD On AAE STD
0 1.94 6.02 0 098 1.17
10 250 5.9¢ 10 1.26 1.29
20 312 6.2%4 20 1.63 1.39
30 3.77 6.54 30 203 153
40 437 712 40 240 17r

Table 2. Results for theYosemitesequence with and without cloudy sky. Gaussian noise with
varying standard deviations, was added, and the average angular errors and their standard
deviations were computed. AAE = average angular error. SEardard deviation.

Yosemite with clouds

o «a ol AAE
0.8 80 100 1.94°
0.4 80 100 2.10°
1.6 80 100 2.04°
0.8 40 100 2.67°
0.8 160 100 2.21°
0.8 80 50 2.07°
0.8 80 200 2.03°

Table 3. Parameter variation for our method with spatio-temporadatimess assumption.

Although our paper does not focus on fast computation butigh &ccuracy, the im-
plicit minimisation scheme presented here is also readpifast, especially if the re-
duction factom is lowered or if the iterations are stopped before full cogeace. The
convergence behaviour and computation times can be foufidtin4. Computations
have been performed on a 3.06 GHz Intel Pentium 4 processoutnrg C/C++ code.

For evaluating the performance of our method for real-worldge data, th&ttlinger
Tor traffic sequence by Nagel was used. This sequence consiSt fohimes of size
512 x 512. Itis available aht t p: / /i 21ww. i r a. uka. de/ i mage sequences/. In
Fig. 2 the computed flow field and its magnitude are shown. Gtimation gives
very realistic results, and the algorithm hardly suffexnirinterlacing artifacts that
are present in all frames. Moreover, the flow boundaries ateer sharp and can be
used directly for segmentation purposes by applying a @nfpksholding step.

3D - spatio-temporal method
reduction outer fixed innerfixed SOR computation AAE
factorn ~ pointiter.  pointiter. iter. | time/frame

0.95 77 5 10 23.4s 1.94°
0.90 38 2 10 5.1s 2.09°
0.80 18 2 10 2.7s 2.56°
0.75 14 1 10 1.2s 3.44°

Table 4. Computation times and convergence for Yosemite sequertbeciouds.
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Fig. 1. (a) Top left:Frame 8 of therosemitesequence without cloudé) Top right: Correspond-
ing frame of the sequenaeith clouds.(c) Middle left: Ground truth without cloudgd) Middle

right: Ground truthwith clouds.(e) Bottom left:Computed flow field by our 3D method for the

sequence without cloud) Bottom right:Ditto for the sequencwith clouds.

6 Conclusion

rotatipiralariant energy functional

In this paper we have investigated a continuous

for optical flow computations based on two terms: a robusa detm with a bright-
ness constancy and a gradient constancy assumption, cednith a discontinuity-

preserving spatio-

temporal TV regulariser. While eachhafse concepts has proved
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Fig. 2. (a) Left: Computed flow field between frame 5 and 6 of Etdinger Tortraffic sequence.
(b) Right: Computed magnitude of the optical flow field.

its use before (see e.g. [22,26]), we have shown that thembatation outperforms
all methods from the literature so far. One of the main reagonthis performance is
the use of an energy functional witton-lineariseddata term and our strategy to con-
sequently postpone all linearisations to themericalschemeWhile linearisations in
the model immediately compromise the overall performaridbesystem, linearisa-
tions in the numerical scheme can help to improve converyenthe global minimum.
Another important result in our paper is the proof thze widely-used warping can
be theoretically justified as a numerical approximatioragtgy that does not influence
the continuous modelWe hope that this strategy of transparent continuous rfindel
in conjunction with consistent numerical approximatiohews that excellent perfor-
mance and deeper theoretical understanding are not cartivadThey are nothing else
but two sides of the same medal.
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